propositions


Summary

Negation(NOT)

TT
FT

Conjunction(AND)

TTT
TFF
FTF
FFF

Disjunction(OR)

TTT
TFT
FTT
FFF

Laws of boolean algebra

Concept

and represent statements -> can either true or false

Order of operations -> first then are equal, use parentheses to reduce ambiguity

Tautology

Contradiction

Application

Logical equivalance

  • solve via truth table
  • LHS and RHS have the same truth values for all choices of truth values of the variables

only one row of the truth table is required to disprove logical equivalance

LHS:RHS:
TTTTTTT
TTFTFFT
Solving via boolean algebra

Exclusive-OR(XOR)
true iff only one of the variables are true

LHS:RHS:
TTFTTFF
TFTTFTT
FTTTFTT
FFFFFTF