Summary
Negation(NOT)
T | T |
F | T |
Conjunction(AND)
T | T | T |
T | F | F |
F | T | F |
F | F | F |
Disjunction(OR)
T | T | T |
T | F | T |
F | T | T |
F | F | F |
Laws of boolean algebra
Concept
Order of operations ->
Tautology
Contradiction
Application
Logical equivalance
- solve via truth table
- LHS and RHS have the same truth values for all choices of truth values of the variables
only one row of the truth table is required to disprove logical equivalance
LHS: | RHS: | |||||
---|---|---|---|---|---|---|
T | T | T | T | T | T | T |
T | T | F | T | F | F | T |
Solving via boolean algebra |
Exclusive-OR(XOR)
true iff only one of the variables are true
LHS: | RHS: | |||||
---|---|---|---|---|---|---|
T | T | F | T | T | F | F |
T | F | T | T | F | T | T |
F | T | T | T | F | T | T |
F | F | F | F | F | T | F |